Form Approved

REPORT DOCUMENTATION PAGE | OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
land maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
linformation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank)]2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 29, 2002 Qpgust20010- Fetraary2008D
Ol Aue 0l — R0 dung O3
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
External Memory Algorithms: Dealing with MASSIVE Data 42604

6. AUTHOR(S)

Jeffrey S. Vitter :
DAADIF- 01~ 1- 0725

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Duke University Office of Spponsorted Programs REPORT NUMBER

Durham, NC 27708-0491

0. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
U. S. Army Research Office ' AGENCY REPORT NUMBER
[TRAREADD- 07 Z5
P.O. Box 12211

Research Triangle Park, NC 27709-2211

41926\, 3 = MA-
11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The bottleneck in many applications that process massive amounts of data is the I/O communication between internal memory and
external memory. The bottleneck is accentuated as processors get faster and parallel processors are used. Parallel disk arrays are
often used to increase the /O bandwidth. The goal of this proposal is to deepen our understanding of the limits of I/O systems and to
construct external memory algorithms that are provably efficient. The three measures of performance are number of I/Os, disk storage
space, and CPU time. Even when the data fit entirely in memory, communication can still be the bottleneck, and the related issues of
caching become important.

Theoretical work involves development and analysis of provably efficient external memory algorithms and cache-efficient algorithms
for a variety of important application areas. We address several batched and on-line problems, involving text databases, prefetching
fand streaming data from parallel disks, and database selectivity estimation. Our experimental validation uses our TPIE programming
environment. Plans for the coming year are to address bottleneck issues in parallel disks, text databases, and XML databases.

14, SUBJECT TERMS | 15. NUMBER OF PAGES
Input/Output, /O, algorithms, external memory 2 0 0 3 0 6 1 1 8 0 5

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18
298-102

Fy ’

MASTER COPY: PLEASE KEEP THIS "MEMORANDUM OF TRANSMITTAL" BLANK FOR REPRODUCTION PURPOSES. WHEN
REPORTS ARE GENERATED UNDER THE ARO SPONSORSHIP, FORWARD A COMPLETED COPY OF THIS FORM WITH EACH
REPORT SHIPMENT TO THE ARO. THIS WILL ASSURE PROPER IDENTIFICATION. NOT TO BE USED FOR INTERIM
PROGRESS REPORTS; SEE PAGE 2 FOR INTERIM PROGRESS REPORT INSTRUCTIONS.

MEMORANDUM OF TRANSMITTAL

U.S. Army Research Office

ATTN: AMSRL-RO-BI (TR)

P.O. Box 12211

Research Triangle Park, NC 27709-2211

] Reprint (Orig + 2 copies) [] Technical Report (Orig + 2 copies)
] Manuscript (1 copy) X Final Progress Report (Orig + 2 copies)

[] Related Materials, Abstracts, Theses (1 copy)

CONTRACT/GRANT NUMBER: DAAD /T —c /, /_,_ OTRAS

- REPORT TITLE:

is forwarded for your information.

SUBMITTED FOR PUBLICATION TO (applicable only if report is manuscript):

Sincerely,

G,

Enclosure 3

Final Progress Report

ARO Grant DAAD19-01-1-0725
External Memory Algorithms:
Dealing with MASSIVE Data

Prof. Jeffrey S. Vitter

Department of Computer Science
Duke University
Levine Science Research Center

Durham, NC 27708-0129
Email: jsv@cs.duke.edu

August 1, 2001 — February 28, 2003

1 Scientific Personnel

Faculty:
o Jeffrey S. Vitter, Professor
Research Associates

¢ Stergios Anastasiadis
e Rahul Shah

Graduate Students:
e Ankur Gupta
Visiting Scientists:

e Peter Varman (on sabbatical from Rice University)

2 Publications

[1] S. Anastasiadis, P. J. Varman, J. S. Vitter, and K. Yi. Lexicographically optimél smoothing
for broadband traffic multiplexing. In Proceedings of the ACM Symposium on Principles of
Distributed Computing, volume 21, Monterey, CA, July 2002.

[2] R. D. Barve and J. S. Vitter. A simple and efficient parallel disk mergesort. ACM Trans.
Comput. Syst., 35(2):189-215, March/April 2002.

[3] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Proceed-
ings of the ACM Symposium on Parallel Algorithms and Architectures, January 2003.

2

[4] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to text
indexing and string matching. submitted to journal.

[5] J.S. Vitter. Algorithms and data structures for external memory. In The Computer Engineering
Handbook, chapter 32, pages 32-1-32-33. CRC Press and IEEE Press, 2002.

[6] M. Wang, J. S. Vitter, L. Lim, and S. Padmanabhan. Wavelet-based cost estimation for spatial
queries. In Proceedings of the International Symposium on Spatial and Temporal Databases,
volume 7, Redondo Beach, CA, July 2001.

3 Scientific Progress and Accomplishments

3.1 Introduction and Overview

Problems involving massive amounts of data arise naturally in a variety of disciplines, such as
spatial databases, geographic information systems, text repositories, string databases, constraint
logic programming, object-oriented databases, statistics, virtual reality systems, and computer
graphics. NASA’s Earth Observing System project, the core part of the Earth Science Enterprise
(formerly Mission to Planet Earth), produces petabytes (10!° bytes) of raster data per year! A
major challenge is to develop mechanisms for processing the data efficiently, or else much of it will
be useless.

The bottleneck in many applications that process massive amounts of data is the I/O communi-
cation between internal memory and external memory. The bottleneck is accentuated as processors
get faster and parallel processors are used. Parallel disk arrays are often used to increase the I/0
bandwidth. The goal of this proposal is to deepen our understanding of the limits of I/O systems
and to construct external memory algorithms that are provably efficient. The three measures of
performance are number of I/Os, disk storage space, and CPU time. Even when the data fit entirely
in memory, communication can still be the bottleneck, and the related issues of caching become
important.

Theoretical work involves development and analysis of provably efficient external memory al-
gorithms and cache-efficient algorithms for a variety of important application areas. In [5], we give
a broad survey of the state of the art in the design and analysis of external memory algorithms
and data structures. We address several batched and on-line problems, involving text databases,
prefetching and streaming data from parallel disks, and database selectivity estimation. Our ex-
perimental validation uses our TPIE programming environment.

3.2 Research Results
3.2.1 Parallel Disks

Technology trends indicate that developing techniques that effectively use multiple disks in parallel
in order to speed up the performance of external sorting is of prime importance. In [2], we look at
the simple randomized merging (SRM) mergesort algorithm that we earlier showed to be the first
parallel disk sorting algorithm that requires a provably optimal number of passes and that is fast
in practice. Knuth (in the new edition of The Art of Computer Programming, Vol. 3: Sorting and
Searching) recently identified SRM (which he calls “randomized striping”) as the method of choice
for sorting with parallel disks. In [2], we present an efficient implementation of SRM, based upon
novel data structures. We give a new implementation for SRM’s lookahead forecasting technique
for parallel prefetching and its forecast and flush technique for buffer management. Our techniques

amount to a significant improvement in the way SRM carries out the parallel, independent disk
accesses necessary to efficiently read blocks of input runs during external merging.

We present the performance of SRM over a wide range of input sizes and compare its per-
formance with that of disk-striped mergesort (DSM), the commonly used technique to implement
external mergesort on D parallel disks. DSM consists of using a standard mergesort algorithm
in conjunction with striped I/O for parallel disk access. SRM merges together significantly more
runs at a time compared with DSM, and thus it requires fewer merge passes. We demonstrate in
practical scenarios that even though the streaming speeds for merging with DSM are a little higher
than those for SRM (since DSM merges fewer runs at a time), sorting using SRM is significantly
faster than with DSM, since SRM requires fewer passes.

The techniques in this paper can be generalized to meet the load-balancing requirements of
other applications using parallel disks, including distribution sort, multiway partitioning of a file
into several other files. and some potential multimedia streaming applications.

3.2.2 XML Databases

The extensible mark-up language (XML) is gaining widespread use as a format for data exchange
and storage on the World Wide Web. Queries over XML data require accurate selectivity estima-
tion of path expressions to optimize query execution plans. Selectivity estimation of XML path
expression is usually done based on summary statistics about the structure of the underlying XML
repository. All previous methods require an off-line scan of the XML repository to collect the
statistics.

In (6], we propose XPathLearner, a method for estimating selectivity of the most commonly
used types of path expressions without looking at the XML data. XPathLearner gathers and re-
fines the statistics using query feedback in an on-line manner and is especially suited to queries in
Internet scale applications since the underlying XML repositories are likely to be inaccessible or
too large to be scanned entirely. Besides the on-line property, our method also has two other novel
features: (a) XPathLearner is workload aware in collecting the statistics and thus can be dramati-
cally more accurate than the more costly off-line method under tight memory constraints, and (b)
XPathLearner automatically adjusts the statistics using query feedback when the underlying XML
data change. We show empirically the estimation accuracy of our method using several real data
sets.

3.2.3 Streaming Algorithms

In [1], we investigate the problem of smoothing multiplexed network traffic, when either a streaming
server transmits data to multiple clients, or a server accesses data from multiple storage devices
or other servers. We introduce efficient algorithms for lexicographically optimally smoothing the
aggregate bandwidth requirements over a shared network link. In the data transmission problem, we
consider the case in which the clients have different buffer capacities but no bandwidth constraints,
or no buffer capacities but different bandwidth constraints. For the data access problem, we handle
the general case of a shared buffer capacity and individual network bandwidth constraints. Previous
approaches in the literature for the data access problem handled either the case of only a single
stream or did not compute the lexicographically optimal schedule.

Lexicographically optimal smoothing (lezopt smoothing) has several advantages. By provably
minimizing the variance of the required aggregate bandwidth, maximum resource requirements
within the network become more predictable, and useful resource utilization increases. Fairness in
sharing a network link by multiple users can be improved, and new requests from future clients

are more likely to be successfully admitted without the need for frequently rescheduling previously
accepted traffic. Efficient resource management at the network edges can better meet quality of
service requirements without restricting the scalability of the system.

3.2.4 Space-Efficient Indexes for Text Databases

The proliferation of online text, such as on the World Wide Web and in databases, motivates the
need for space-efficient text indexing methods that support fast string searching. In this scenario,
consider a text T that is made up of n symbols drawn from a fixed alphabet X and that is represented
in nlog|%| bits by encoding each symbol with log|Z| bits. The goal is to support quick search
queries of any string pattern P of m symbols, with T" being fully scanned only once, namely, when
the index is created.

Text indexing schemes published in the literature are greedy of space and require additional
Q(nlogn) bits in the worst case. For example, suffix trees and suffix arrays need 2(n) memory
words of Q(logn) bits in the standard unit cost RAM. These indexes are larger than the text itself
by a factor of Q(log;s| n), which is significant when ¥ is of constant size, such as ASCII or UNICODE.
On the other hand, they support fast searching either in O(m log |Z|) time or in O(m +logn) time,
plus an output-sensitive cost O(occ) for listing the pattern occurrences.

In [4], we present a new text index that is based upon new compressed representations of suffix
arrays and suffix trees. It achieves O(m/logg|n + logjy n) search time in the worst case, for any
constant 0 < € < 1, with at most (¢~ + O(1)) nlog|Z| bits of storage; that is, the index size is
comparable to the text size in the worst case. The above bounds improve both time and space of
previous indexing schemes. Listing the pattern occurrences introduces a sublogarithmic slowdown
factor in the output-sensitive cost, giving O(occ logjs; n) time as a result. When the patterns are
sufficiently long, namely, for m = Q((log?*¢ n)(logs logn)), we can use auxiliary data structures
in O(nlog|%|) bits to obtain a total search bound of O(m/ log)sn + occ) time, which is optimal.

3.2.5 Entropy-Compressed Text Indexes

In [3] we continue our work on space-efficient indexes and present a novel implementation of
compressed suffix arrays exhibiting new tradeoffs between search time and space occupancy for
a given text (or sequence) of n symbols over an alphabet X, where each symbol is encoded by
lg || bits. We show that compressed suffix arrays use just nHj + O(nlglgn/lgs n) bits, while
retaining full text indexing functionalities, such as searching any pattern sequence of length m in
O(m1g|%| + polylog(n)) time. The term Hj, < g || denotes the hth-order empirical entropy of the
text, which means that our index is nearly optimal in space apart from lower-order terms, achieving
asymptotically the empirical entropy of the text (with a multiplicative constant 1). If the text is
highly compressible so that Hy, = o(1) and the alphabet size is small, we obtain a text index with
o(m) search time that requires only o(n) bits. We also report further results and tradeoffs on on
high-order entropy-compressed text indexes.

4 Technology Transfer

We plan to pursue the practical applications of space-efficient search indexes. Implementation is
ongoing. '

Our efforts are also having an impact internationally. We have had discussions about the
feasibility of adding parallel disk capabilities to the LEDA project at Max Planck in Saarbruecken,
Germany.

